All Issue

2020 Vol.29, Issue 4 Preview Page

Original Articles

October 2020. pp. 381-387
Abstract
References
1
Abadi M., A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.S. Corrado, A. Davis, J. Dean, M. Devin, and et al. 2016. Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv Preprint arXiv: 1603. 04467.
2
Abràmoff M.D., P.J. Magalhães, and S.J. Ram. 2004. Image processing with ImageJ. Biophotonics Int. 11:36-42.
3
Anwar S.M., M. Majid, A. Qayyum, M. Awais, M. Alnowami, and M.K. Khan. 2018. Medical image analysis using convolutional neural networks: a review. J. Med. Syst. 42:226.
10.1007/s10916-018-1088-130298337
4
Berman M.E., and T.M. DeJong. 1996. Water stress and crop load effects on fruit fresh and dry weights in peach (Prunus persica). Tree Physiology 16:859-864.
10.1093/treephys/16.10.85914871677
5
Chang A., A. Dai, T. Funkhouser, M. Halber, M. Nießner, M. Savva, S. Song, A. Zeng, Y. Zhang. 2017. Matterport3D: Learning from RGB-D data in indoor environments. arXiv Preprint arXiv:1709.06158.
10.1109/3DV.2017.00081
6
Cho Y.Y., S. Oh, M.M. Oh, and J.E. Son. 2007. Estimation of individual leaf area, fresh weight, and dry weight of hydroponically grown cucumbers (Cucumis sativus L.) using leaf length, width, and SPAD value. Sci. Hortic. 111:330-334.
10.1016/j.scienta.2006.12.028
7
Dadhwal V.K. 2003. Crop growth and productivity monitoring and simulation using remote sensing and GIS. In M.V.K. Sivakumar, P.S. Roy, K. Harmsen, S.K. Saha, eds, Satellite Remote Sensing and GIS Applications in Agricultural Meteorology. WMO, Switzerland. p. 263-289.
8
He K., X. Zhang, S. Ren, and J. Sun. 2016. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition p. 770-778.
10.1109/CVPR.2016.9026180094
9
Huang P., L. de-Bashan, T. Crocker, J.W. Kloepper, and Y. Bashan. 2017. Evidence that fresh weight measurement is imprecise for reporting the effect of plant growth-promoting (rhizo) bacteria on growth promotion of crop plants. Biol. Fertil. Soils 53:199-208.
10.1007/s00374-016-1160-2
10
Koppula H.S., R. Gupta, and A. Saxena. 2013. Learning human activities and object affordances from RGB-D videos. Int. J. Rob. Res. 32:951-970.
10.1177/0278364913478446
11
Kingma D., and J. Ba. 2014. Adam: A method for stochastic optimization. arXiv Preprint arXiv:1412.6980v9.
12
Krizhevsky A. I. Sutskever, and G.E. Hinton. 2012. Imagenet classification with deep convolutional neural networks. In: Proceedings of Advances in Neural Information Processing Systems, December, Lake Tahoe, NV, USA, 1097-1105.
13
Lee J.W., and J.E. Son. 2019. Nondestructive and continuous fresh weight measurements of bell peppers grown in soilless culture systems. Agronomy 9:652.
10.3390/agronomy9100652
14
Marcelis L.F.M., and L.C. Ho. 1999. Blossom-end rot in relation to growth rate and calcium content in fruits of sweet pepper (Capsicum annuum L.). J. Exp. Bot. 50:357-363.
10.1093/jxb/50.332.357
15
McCann M.T., K.H. Jin, and M. Unser. 2017. Convolutional neural networks for inverse problems in imaging: A review. IEEE Signal Process. Mag. 34:85-95.
10.1109/MSP.2017.2739299
16
Mokhtarpour H., C.B. Teh, G. Saleh, A.B. Selamat, M.E. Asadi, and B. Kamkar. 2010. Non-destructive estimation of maize leaf area, fresh weight, and dry weight using leaf length and leaf width. Commun. Biometry Crop Sci. 5:19-26.
17
Mnih V., K. Kavukcuoglu, D. Silver, A.A. Rusu, J. Veness, M.G. Bellemare, A. Graves, M. Riedmiller, A.K. Fidjeland, G. Ostrovski, and et al. 2015. Human-level control through deep reinforcement learning. Nature 518:529-533.
10.1038/nature1423625719670
18
Picon A., A. Alvarez-Gila, M. Seitz, A. Ortiz-Barredo, J. Echazarra, and A. Johannes. 2019. Deep convolutional neural networks for mobile capture device-based crop disease classification in the wild. Comput. Electron. Agric. 161: 280-290.
10.1016/j.compag.2018.04.002
19
Quinonero-Candela J., C.E. Rasmussen, and C.K. Williams. 2007. Approximation methods for Gaussian process regression. In B. Léon, C. Olivier, D.C. Dennis, W. Jason, eds, Large-scale kernel machines. MIT Press, US, pp 203-223.
20
Seginer I. 1997. Some artificial neural network applications to greenhouse environmental control. Comput. Electron. Agric. 18:167-186.
10.1016/S0168-1699(97)00028-8
21
Shen W., M. Zhou, F. Yang, D. Yu, D. Dong, C. Yang, Y. Zang, and J. Tian. 2017. Multi-crop convolutional neural networks for lung nodule malignancy suspiciousness classification. Pattern Recognit. 61:663-673.
10.1016/j.patcog.2016.05.029
22
Shi P.J., L. Chen, C. Hui, and H.D. Grissino-Mayer. 2016. Capture the time when plants reach their maximum body size by using the beta sigmoid growth equation. Ecol. Modell. 320:177-181.
10.1016/j.ecolmodel.2015.09.012
23
Simonyan K., and A. Zisserman. 2014. Very deep convolutional networks for large-scale image recognition. arXiv Preprint arXiv:1409.1556.
24
South P.F., A.P. Cavanagh, H.W. Liu, and D.R. Ort. 2019. Synthetic glycolate metabolism pathways stimulate crop growth and productivity in the field. Science 363:6422.
10.1126/science.aat907730606819
25
Rawat W. and Z. Wang. 2017. Deep convolutional neural networks for image classification: A comprehensive review. Neural Comput. 29:2352-2449.
10.1162/neco_a_0099028599112
Information
  • Publisher :The Korean Society for Bio-Environment Control
  • Publisher(Ko) :(사)한국생물환경조절학회
  • Journal Title :Protected horticulture and Plant Factory
  • Journal Title(Ko) :시설원예·식물공장
  • Volume : 29
  • No :4
  • Pages :381-387