All Issue

2020 Vol.29, Issue 3

Original Articles


July 2020. pp. 209-218
Abstract


References
1 

Aiswarya, L., K. Arunadevi, R. Lalitha, and S. Vallalkannan. 2019. Estimation of actual crop evapotranspiration of green chili in semi-arid region under different atmospheric condition. International journal of current microbiology and applied sciences 8:1104-1110.

10.20546/ ijcmas.2019.805.127
2 

Albuquerque, F.S., E.F.F. Silva, J.A.C. Albuquerque Filho, and G.S. Lima. 2012. Water requirement and crop coefficient of fertigated sweet pepper. Brazilian journal of Irrigation and drainage 17:481-493.

10.15809/irriga.2012v17n4p481
3 

Allen, R. G., L. S. Pereira, D. Raes, and M. Smith. 1998. Crop evaporation-guidelines for computing crop water requirements. FAO Irrigation and drainage paper 56. FAO.

4 

Baek, J. H., J. W. Heo, H. H. Kim, Y. Hong, and J. S. Lee. 2018. Research platform design for the Korea smart greenhouse based on cloud computing. Protected horticulture and plant factory 27:27-33.

10.12791/KSBEC.2018.27.1.27
5 

Bakker, J. C., G. P. A. Bot, H. Challa, and N. J. van de Braak. 1995. Greenhouse Climate Control. Wageningen Pers, Wageningen, The Netherlands. 15-160.

10.3920/978-90-8686-501-7
6 

Baptista, F. J., B. J. Bailey, and J. Meneses. 2005. Measuring and modelling transpiration versus evapotranspiration of a tomato crop grown on soil in a Mediterranean greenhouse. Acta horticulture 691:313-320.

10.17660/ActaHortic.2005.691.36
7 

Choi, Y., M. Y. Kim, S. O'Shaughnessy, J. G. Jeon, Y. J. Kim, and W. J. Song. 2018. Comparison of artificial neural network and empirical models to determine daily reference evapotranspiration. Journal of the Korean society of agricultural engineer 60: 43-54. DOI:

10.5389/ KSAE.201860.6.043
8 

Chopda, A., A. P. Sahu, D. M. Das, B. Panigrahi, and S. C. Senapati. 2018. Variation in actual evapotranspiration of green chili inside and outside the rooftop greenhouse under deficit irrigation. International journal of current microbiology and applied sciences 7:4152-4159.

10.20546/ijcmas.2018.708.434
9 

Costa, P. M., I. Poças, and M. Cunha 2019. Modelling evapotranspiration of soilless cut roses "Red Naomi" based on climatic and crop predictors. Horticultural science 46:107-114.

10.17221/147/2017-HORTSCI
10 

Fazlil llahi, W. F. 2009. Evapotranspiration models in greenhouse. Master's Thesis, Wageningen University.

11 

Fernandez, M. D., S. S. Bonachela, F. Orgaz, R. Thompson, J. C. Lopez, M. R. Granados, M. Gallardo, and E. Fereres. 2010. Measurement and estimation of plastic greenhouse reference evapotranspiration in a Mediterranean climate. Irrigation science 28:497-509.

10.1007/s00271-010-0210-z
12 

Harmanto, V., M. Salokhe, M. S. Babel, and H. J. Tantau. 2005. Water requirement of drip irrigated tomatoes grown in greenhouse in tropical environment. Agricultural water management 71:225-242.

10.1016/j.agwat.2004.09.003
13 

Jayasekara, S. N., W. H. Na, A. B. Owababi, J. W. Lee, A. Rasheed, H. K. Kim, and H. W. Lee. 2018. Comparison of environmental conditions and insulation effect between air inflated and conventional double layer greenhouse. Protected horticulture and plant factory 27:46-53.

10.12791/KSBEC.2018.27.1.46
14 

Karaca C., B. Tekelioğlu, D. Büyüktaş, and R. Baştuğ. 2017. Assessment of the equations computing reference crop evapotranspiration. Academia journal of engineering and applied sciences ICAE-IWC (Special Issue):144-161.

15 

Katsoulas, N. and C. Stanghellini. 2019. Modelling crop transpiration in greenhouses: Different models for different applications. Agronomy 9:1-17.

10.3390/ agronomy9070392
16 

Kitta, E., A. Baille, N. Katsoulas, and N. Rigakis. 2014. Predicting reference evapotranspiration for screenhouse- grown crops. Agricultural water management 143:122-130.

10.1016/j.agwat.2014.07.006
17 

Lozano, C. S., R. Rezende, P. S. L. Freitas, T. L. Hachmann, F. A. S. Santos, and A. F. B. A. Andrean. 2017. Estimation of evapotranspiration and crop coefficient of melon cultivated in protected environment. Revista brasileira de engenharia agrícola e ambiental 21:758-762.

10.1590/1807-1929/agriambi.v21n11p758-762
18 

Lizarraga, A., H. Boesveld, F. Huibers, and C. Robles. 2003. Evaluating irrigation scheduling of hydroponic tomato in Navarra, Spain. Irrigation and drainage 52:177-188.

10.1002/ird.86
19 

Moazed, H., A. A. Ghaemi, and Rafiee, M. R. 2014. Evaluation of several reference evapotranspiration methods: a comparative study of greenhouse and outdoor condition. Iranian Journal of Science and Technology. Transactions of civil engineering 38:421-437.

20 

Nikolaou, G., D. Neocleous, N. Katsoulas, and C. Kittas. 2019. Review: irrigation of greenhouse crops. Horticulture 5:1-20.

10.3390/horticulturae5010007
21 

Pamungkas, A. P., K. Hatou, and T. Morimoto. 2013. Modeling the evapotranspiration inside the greenhouse systems by using matlab simulink. In IFAC Proceedings Volumes 46: 33-37. Retrieved from

10.3182/20130327- 3-JP-3017.00010
22 

Papadakis, G., A. Frangoudakis, and S. Kyritsis. 1994. Experimental investigation and modelling of heat and mass transfer between a tomato crop and greenhouse environment. Journal of Agriculture engineering research 57:217-227.

10.1006/jaer.1994.1022
23 

Perera, K. C., A. W. Western, B. Nawarathna, and B. George. 2015. Comparison of hourly and daily reference crop evapotranspiration equations across seasons and climate zones in Australia. Agricultural water management 148: 84-96.

10.1016/j.agwat.2014.09.016
24 

Pérez-Castro, A., J. A. Sánchez-Molina, M. Castilla, and J. Sánchez-Moreno. 2017. cFertigUAL: A fertigation management app for greenhouse vegetable crops. Agricultural water management 183:186-193.

10.1016/j.agwat.2016.09.013
25 

Rahil, M. H. and A. Qanadillo. 2015. Effects of different irrigation regimes on yield and water use efficiency of cucumber crop. Agricultural water management 148:10-15.

10.1016/j.agwat.2014.09.005
26 

Snyder, R. G. 1992. Greenhouse tomato handbook. Publication No. 1828. Mississippi State University. Cooperative extension service, USA. p. 30.

27 

Sharma, H., M. K. Shukla, P. W.Bosland, and R. Steiner. 2017. Soil moisture sensor calibration, actual evapotranspiration, and crop coefficients for drip irrigated greenhouse chile peppers. Agricultural water management 179:81-91. https:// doi.org/10.1016/j.agwat.2016.07.001

10.1016/j.agwat.2016.07.001
28 

Tan, C. S. 1990. Irrigation scheduling for fruit crop: low- volume drip or micro-sprinkler systems. Ministry of Agriculture, Food and Rural Affairs of Canada. Accessed 15 July, 2019. Retrieved from http://www.omafra.gov.on.ca/ english/crops/ facts/90-069.htm#b.

29 

van Iersel, M. W., M. Chappell, and J. D. Lea-cox. 2013. Sensors for improved efficiency of irrigation in greenhouse and nursery production. American society for horticultural science 23:735-746.

10.21273/HORTTECH.23.6.735
30 

Villarreal-Guerrero, F., M. Kacira, E. Fitz-Rodríguez, C. Kubota, G. A. Giacomelli, R. Linker, and A. Arbel. 2012. Comparison of three evapotranspiration models for a greenhouse cooling strategy with natural ventilation and variable high-pressure fogging. Scientia Horticulture 134: 210-221.

10.1016/j.scienta.2011.10.016
31 

Woo, Y. H., H. J. Kim, Y. I. Nam, I. H. Cho, and Y. S. Kwon. 2000. Predicting and measuring transpiration based on phyto monitoring of tomato in greenhouse. Protected horticulture and plant factory 41:459-463.

32 

Yang, X., T. H. Short, R. D. Fox, and W. L. Bauerle. 1989. The Microclimate and transpiration of a greenhouse cucumber crop. American society of agricultural engineers 32:2143- 2150.

10.13031/2013.31276
Information
  • Publisher :The Korean Society for Bio-Environment Control
  • Publisher(Ko) :(사)한국생물환경조절학회
  • Journal Title :Protected horticulture and Plant Factory
  • Journal Title(Ko) :시설원예·식물공장
  • Volume : 29
  • No :3
  • Pages :209-218