All Issue

2020 Vol.29, Issue 3 Preview Page

Original Articles


July 2020. pp. 277-284
Abstract


References

Literature Cited

1 

Choi, H.Y., T.W. Moon, D.H. Jung, and J.E. Son. 2019. Prediction of air temperature and relative humidity in greenhouse via a multilayer perceptron using environmental factors. Protected horticulture and plant factory. 28:95-103 (in Korean).

10.12791/KSBEC.2019.28.2.95
2 

Fourati, F. and M. Chtourou. 2007. A greenhouse control with feed-forward and recurrent neural networks. Simulation modelling practice and theory. 15:1016-1028.

10.1016/j.simpat.2007.06.001
3 

Gers, Felix.A., Jrgen. Schmidhuber, and Fred. Cummins. 2000. Neural Computation. 12:2451-2471.

10.1162/08997660030001501511032042
4 

Jo, J.M. 2019. Effectiveness of normalization pre-processing of big data to the machine learning performance. Journal of the KIECS. 14:547-552 (in Korean).

5 

Ju, H.J. 2017. The model evaluation of the greenhouse temperature management and the temperature management scenario to warm root zone during low temperature season for smart farm. Journal of Agriculture & Life Sciences. 48:13-19 (in Korean).

6 

Jung, D.H., H.I. Yoon, and J.E. Son. 2017. Development of a three-variable canopy photosynthetic rate model of romaine lettuce (Lactuca sativa L.) grown in plant factory modules using light intensity, temperature, and growth stage. Protected Horticulture and Plant Factory, 26:268-275 (in Korean).

10.12791/KSBEC.2017.26.4.268
7 

Kim, J.H. 2016. 4th industrial revolution, education in the era of artificial intelligence. STSS sustainability science conference. 21-29 (in Korean).

8 

Kim, S.K., Y.G. Cha, and G.S. Kim. 2016. Smart farm will lead future farming. Samsung KPMG KRI research institute. Issue monitor (in Korean).

9 

Kim, S.K., and T.I. Oh. 2018. Real-time PM10 concentration prediction LSTM model based on IoT streaming sensor data. Korea academy industrial cooperation society. 19:310-318 (in Korean).

10 

Kim, S.Y., K.S.. Park, S.M. Lee, N.M. Heo, and K.H. Ryu. 2018. Development of prediction model for greenhouse control based on machine learning. Journal of digital contents society 19:749-756 (in Korean).

11 

Kwon, H.M., S.E. Hong, D.S. Park, H.J. Kim, and Y.G. Kim. 2017. A study on the analysis of major crop models for optimum growth conditions. Proceedings of the korean institute of communication sciences conference. 1539-1540 (in Korean).

12 

Lee, J.S., Y.G. Hong, K.H. Kim, D.H. Im, and S.R. Han. 2016. A study on the development of cloud system for automatic control of smart greenhouse. Proceedings of the korean institute of communication sciences conference. 559-560 (in Korean).

13 

Ooteghem, R.J.C. 2010. Optimal control design for a solar greenhouse. IFAC proceedings 43:304-309.

10.3182/20101206-3-JP-3009.00054
14 

Park, S.A., M.G. Kim, M.H. Yoo, M.M. Oh, and K.C. Son. 2010. Comparison of indoor CO2 removal capability of five foliage plants by photosynthesis. Korean journal of horticultural science & technology 28:864-870 (in Korean).

15 

Patil, S.L., H.J. Tantau, and V.M. Salokhe. 2008. Modelling of tropical greenhouse temperature by auto regressive and neural network models. Biosystems engineering 99:423-431.

10.1016/j.biosystemseng.2007.11.009
16 

Statistics Korea. 2017. KOSIS national statistical portal. Available at: http://www.kosis.kr. accessed september 21, 2018.

17 

Trejo-Perea, M., G. Herrera-Ruiz, J. Rios-Moreno, R.C. Miranda and E. Rivas-Araiza. 2009. Greenhouse energy consumption prediction using neural networks models. International journal of agriculture & biology. 235-249.

18 

Vranken, E., R. Gevers, J.M. Aerts and D. Berckmans. 2005. Performance of model-based predictive control of the ventilation rate with axial fans. Biosystems Engineering. 91:87-98.

10.1016/j.biosystemseng.2005.02.006
19 

Zhang, Xiao., Ling. Xu, Feng. Ding, and Tasawar. Hayat. 2018. Combined state and parameter estimation for a bilinear state space system with moving average noise. Journal of the franklin institute. 355:3079-3103.

10.1016/j.jfranklin.2018.01.011
Information
  • Publisher :The Korean Society for Bio-Environment Control
  • Publisher(Ko) :(사)한국생물환경조절학회
  • Journal Title :Protected horticulture and Plant Factory
  • Journal Title(Ko) :시설원예·식물공장
  • Volume : 29
  • No :3
  • Pages :277-284